Research Library

Registration Now Open for

ADOS-2 Clinical Training Workshop

November 25-27. Click here for info!

Export 42 results:
Author Title [ Type(Desc)] Year
Filters: Author is Verma, Ragini  [Clear All Filters]
Journal Article
H. Cao, Savran, A., Verma, R., and Nenkova, A., Acoustic and Lexical Representations for Affect Prediction in Spontaneous Conversations., Comput Speech Lang, vol. 29, no. 1, pp. 203-217, 2015.
B. Solmaz, Tunc, B., Parker, D., Whyte, J., Hart, T., Rabinowitz, A., Rohrbach, M., Kim, J., and Verma, R., Assessing connectivity related injury burden in diffuse traumatic brain injury., Hum Brain Mapp, vol. 38, no. 6, pp. 2913-2922, 2017.
Y. Ghanbari, Bloy, L., Tunc, B., Shankar, V., Roberts, T. P. L., J Edgar, C., Schultz, R. T., and Verma, R., On characterizing population commonalities and subject variations in brain networks., Med Image Anal, vol. 38, pp. 215-229, 2017.
M. Ingalhalikar, Parker, D., Ghanbari, Y., Smith, A., Hua, K., Mori, S., Abel, T., Davatzikos, C., and Verma, R., Connectome and Maturation Profiles of the Developing Mouse Brain Using Diffusion Tensor Imaging., Cereb Cortex, vol. 25, no. 9, pp. 2696-706, 2015.
M. Ingalhalikar, Parker, W. A., Bloy, L., Roberts, T. P. L., and Verma, R., Creating multimodal predictors using missing data: classifying and subtyping autism spectrum disorder., J Neurosci Methods, vol. 235, pp. 1-9, 2014.
T. P. L. Roberts, Heiken, K., Kahn, S. Y., Qasmieh, S., Blaskey, L., Solot, C., Parker, W. Andrew, Verma, R., and Edgar, J. Christophe, Delayed magnetic mismatch negativity field, but not auditory M100 response, in specific language impairment., Neuroreport, vol. 23, no. 8, pp. 463-8, 2012.
M. Ingalhalikar, Parker, D., Bloy, L., Roberts, T. P. L., and Verma, R., Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD., Neuroimage, vol. 57, no. 3, pp. 918-27, 2011.
R. T. Shinohara, Shou, H., Carone, M., Schultz, R., Tunc, B., Parker, D., and Verma, R., Distance-Based Analysis of Variance for Brain Connectivity, 2016.
Y. Ghanbari, Bloy, L., Batmanghelich, K., Roberts, T. P. L., and Verma, R., Dominant component analysis of electrophysiological connectivity networks., Med Image Comput Comput Assist Interv, vol. 15, no. Pt 3, pp. 231-8, 2012.
B. Tunc, Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., Ruparel, K., Gur, R. E., Gur, R. C., and Verma, R., Establishing a link between sex-related differences in the structural connectome and behaviour., Philos Trans R Soc Lond B Biol Sci, vol. 371, no. 1688, p. 20150111, 2016.
E. Caruyer and Verma, R., On facilitating the use of HARDI in population studies by creating rotation-invariant markers., Med Image Anal, vol. 20, no. 1, pp. 87-96, 2015.
T. D. Satterthwaite, Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., Hopson, R., Jackson, C., Prabhakaran, K., Bilker, W. B., Calkins, M. E., Loughead, J., Smith, A., Roalf, D. R., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. C., and Gur, R. E., Functional maturation of the executive system during adolescence., J Neurosci, vol. 33, no. 41, pp. 16249-61, 2013.
Y. Ghanbari, Bloy, L., Shankar, V., J Edgar, C., Roberts, T. P. L., Schultz, R. T., and Verma, R., Functionally driven brain networks using multi-layer graph clustering., Med Image Comput Comput Assist Interv, vol. 17, no. Pt 3, pp. 113-20, 2014.
P. Savadjiev, Rathi, Y., Bouix, S., Smith, A. R., Schultz, R. T., Verma, R., and Westin, C. - F., Fusion of white and gray matter geometry: a framework for investigating brain development., Med Image Anal, vol. 18, no. 8, pp. 1349-60, 2014.
L. Bloy, Ingalhalikar, M., Eavani, H., Roberts, T. P. L., Schultz, R. T., and Verma, R., HARDI based pattern classifiers for the identification of white matter pathologies., Med Image Comput Comput Assist Interv, vol. 14, no. Pt 2, pp. 234-41, 2011.
J. - P. Fortin, Parker, D., Tunc, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R., Satterthwaite, T. D., Gur, R. C., Gur, R. E., Schultz, R. T., Verma, R., and Shinohara, R. T., Harmonization of multi-site diffusion tensor imaging data., Neuroimage, vol. 161, pp. 149-170, 2017.
T. D. Satterthwaite, Wolf, D. H., Ruparel, K., Erus, G., Elliott, M. A., Eickhoff, S. B., Gennatas, E. D., Jackson, C., Prabhakaran, K., Smith, A., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. E., and Gur, R. C., Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth., Neuroimage, vol. 83, pp. 45-57, 2013.
Y. Ghanbari, Smith, A. R., Schultz, R. T., and Verma, R., Identifying group discriminative and age regressive sub-networks from DTI-based connectivity via a unified framework of non-negative matrix factorization and graph embedding., Med Image Anal, vol. 18, no. 8, pp. 1337-48, 2014.
M. Ingalhalikar, Smith, A. R., Bloy, L., Gur, R., Roberts, T. P. L., and Verma, R., Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs., Med Image Comput Comput Assist Interv, vol. 15, no. Pt 2, pp. 254-61, 2012.
G. L. Baum, Roalf, D. R., Cook, P. A., Ciric, R., Rosen, A. F. G., Xia, C., Elliott, M. A., Ruparel, K., Verma, R., Tunc, B., Gur, R. C., Gur, R. E., Bassett, D. S., and Satterthwaite, T. D., The impact of in-scanner head motion on structural connectivity derived from diffusion MRI., Neuroimage, vol. 173, pp. 275-286, 2018.
D. R. Roalf, Quarmley, M., Elliott, M. A., Satterthwaite, T. D., Vandekar, S. N., Ruparel, K., Gennatas, E. D., Calkins, M. E., Moore, T. M., Hopson, R., Prabhakaran, K., Jackson, C. T., Verma, R., Hakonarson, H., Gur, R. C., and Gur, R. E., The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort., Neuroimage, vol. 125, pp. 903-919, 2016.
B. Tunc, Ingalhalikar, M., Parker, D., Lecoeur, J., Singh, N., Wolf, R. L., Macyszyn, L., Brem, S., and Verma, R., Individualized Map of White Matter Pathways: Connectivity-Based Paradigm for Neurosurgical Planning., Neurosurgery, vol. 79, no. 4, pp. 568-77, 2016.
L. Bloy, Ingalhalikar, M., Batmanghelich, N. K., Schultz, R. T., Roberts, T. P. L., and Verma, R., An integrated framework for high angular resolution diffusion imaging-based investigation of structural connectivity., Brain Connect, vol. 2, no. 2, pp. 69-79, 2012.
Y. Ghanbari, Bloy, L., J Edgar, C., Blaskey, L., Verma, R., and Roberts, T. P. L., Joint analysis of band-specific functional connectivity and signal complexity in autism., J Autism Dev Disord, vol. 45, no. 2, pp. 444-60, 2015.
K. Hong, Nenkova, A., March, M. E., Parker, A. P., Verma, R., and Kohler, C. G., Lexical use in emotional autobiographical narratives of persons with schizophrenia and healthy controls., Psychiatry Res, vol. 225, no. 1-2, pp. 40-49, 2015.
T. D. Satterthwaite, Wolf, D. H., Roalf, D. R., Ruparel, K., Erus, G., Vandekar, S., Gennatas, E. D., Elliott, M. A., Smith, A., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. E., and Gur, R. C., Linked Sex Differences in Cognition and Functional Connectivity in Youth., Cereb Cortex, vol. 25, no. 9, pp. 2383-94, 2015.
T. D. Satterthwaite, Elliott, M. A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M. E., Hopson, R., Jackson, C., Keefe, J., Riley, M., Mentch, F. D., Sleiman, P., Verma, R., Davatzikos, C., Hakonarson, H., Gur, R. C., and Gur, R. E., Neuroimaging of the Philadelphia neurodevelopmental cohort., Neuroimage, vol. 86, pp. 544-53, 2014.
B. Tunc, Ghanbari, Y., Smith, A. R., Pandey, J., Browne, A., Schultz, R. T., and Verma, R., PUNCH: Population Characterization of Heterogeneity., Neuroimage, vol. 98, pp. 50-60, 2014.
M. Ingalhalikar, Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Hakonarson, H., Gur, R. E., Gur, R. C., and Verma, R., Sex differences in the structural connectome of the human brain., Proc Natl Acad Sci U S A, vol. 111, no. 2, pp. 823-8, 2014.
H. Cao, Verma, R., and Nenkova, A., Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech, Comput Speech Lang, vol. 28, no. 1, pp. 186-202, 2015.
N. Honnorat, Parker, D., Tunc, B., Davatzikos, C., and Verma, R., Subject-Specific Structural Parcellations Based on Randomized AB-divergences., Med Image Comput Comput Assist Interv, vol. 10433, pp. 407-415, 2017.
A. Savran, Cao, H., Nenkova, A., and Verma, R., Temporal Bayesian Fusion for Affect Sensing: Combining Video, Audio, and Lexical Modalities., IEEE Trans Cybern, vol. 45, no. 9, pp. 1927-41, 2015.
J. P. Thawani, Singh, N., Pisapia, J. M., Abdullah, K. G., Parker, D., Pukenas, B. A., Zager, E. L., Verma, R., and Brem, S., Three-Dimensional Printed Modeling of Diffuse Low-Grade Gliomas and Associated White Matter Tract Anatomy., Neurosurgery, vol. 80, no. 4, pp. 635-645, 2017.
S. N. Vandekar, Shinohara, R. T., Raznahan, A., Roalf, D. R., Ross, M., DeLeo, N., Ruparel, K., Verma, R., Wolf, D. H., Gur, R. C., Gur, R. E., and Satterthwaite, T. D., Topologically dissociable patterns of development of the human cerebral cortex., J Neurosci, vol. 35, no. 2, pp. 599-609, 2015.
B. Tunc, Shankar, V., Parker, D., Schultz, R. T., and Verma, R., Towards a Quantified Network Portrait of a Population., Inf Process Med Imaging, vol. 24, pp. 650-61, 2015.
B. Tunc and Verma, R., Unifying Inference of Meso-Scale Structures in Networks., PLoS One, vol. 10, no. 11, p. e0143133, 2015.
M. Ingalhalikar, Parker, W. A., Bloy, L., Roberts, T. P. L., and Verma, R., Using multiparametric data with missing features for learning patterns of pathology., Med Image Comput Comput Assist Interv, vol. 15, no. Pt 3, pp. 468-75, 2012.
L. Bloy, Ingalhalikar, M., Eavani, H., Schultz, R. T., Roberts, T. P. L., and Verma, R., White matter atlas generation using HARDI based automated parcellation., Neuroimage, vol. 59, no. 4, pp. 4055-63, 2012.
D. R. Roalf, Gur, R. E., Verma, R., Parker, W. A., Quarmley, M., Ruparel, K., and Gur, R. C., White matter microstructure in schizophrenia: associations to neurocognition and clinical symptomatology., Schizophr Res, vol. 161, no. 1, pp. 42-9, 2015.
F. Zhang, Savadjiev, P., Caí, W., Song, Y., Rathi, Y., Tunc, B., Parker, D., Kapur, T., Schultz, R. T., Makris, N., Verma, R., and O'Donnell, L. J., Whole brain white matter connectivity analysis using machine learning: An application to autism., Neuroimage, vol. 172, pp. 826-837, 2018.